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Abstract 
 
     Association of radar and ESM tracks is an important component for multisensor-

multitarget tracking systems. It is essential to the overall performance of a track fusion 

process. In this report, we present an ESM/track association algorithm in a new modified 

polar coordinate (MPC) system. The algorithm is based on a theoretical performance analysis 

of ESM/radar track association techniques in the MPC. Formulas for computing the correct 

and false association probabilities with and without state estimation biases are derived. We 

also discuss the effect of the number of observable states on association performance. The 

proposed algorithm uses a maximum likelihood (ML) algorithm for estimating the target 

states, of which the observable state estimates are subsequently used for the ESM/radar track 

association. Computer simulations are used to demonstrate the performance and improvement 

of the proposed ESM/radar track association method.  

 

Résumé 
 
     L’association de pistes radar et SME est une composante importante des systèmes 

multicapteurs de poursuite de cibles multiples. Cette association est essentielle au rendement 

global du processus de fusion de pistes. Dans le présent document, nous présentons un 

algorithme d’association de pistes SME/radar dans un nouveau système de coordonnées 

polaires modifié (MPC). L’algorithme est basé sur une analyse de rendement théorique des 

techniques d’association de pistes SME/radar dans le système MPC. Les formules servant à 

calculer les probabilités d’association correctes et erronées  avec et sans les biais d’estimation 

d’état sont dérivées. Nous discutons également des effets d’un bon nombre d’états 

observables sur le rendement de l’association. L’algorithme proposé utilise un algorithme de 

maximum de vraisemblance (MV) pour estimer les états des cibles. Ces états observables 

estimés sont ensuite utilisés pour l’association de pistes SME/radar. Les simulations 

informatiques servent à démontrer le rendement et l’amélioration de la méthode d’association 

de pistes SME/radar. 
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Executive summary 
 
     This report focuses on the integration of radar and electronic support measures (ESM) 

sensors, in particular, the association of ESM/radar tracks. The work is motivated by the 

requirement of the DRDC TDP SISWS (Shipborne Integration of Sensor & Weapon System) 

project, and may contribute to the sensor manager part of the project in the future.  

     Fusion of target tracks from multiple similar or dissimilar sensors is an effective method to 

improve tracking accuracy and target acquisition rates. ESM sensor and radar are the two 

most popular types of sensors that have been deployed in air, sea and land surveillance 

systems. The information obtained by radar and ESM sensors is complementary, and 

integrating radar and ESM sensor outputs will help to increase the likelihood of target 

acquisition and to improve the tracking quality.  

      Track association is a pre-requisite for ESM/radar fusion and is essential to the overall 

performance of tracking systems. One of the uniqueness of ESM/radar track association is that 

the only common parameter between the ESM sensors and radar is the bearing measurements. 

In addition, the bearing measurements are not synchronized. Usually bearing-only tracking is 

required for ESM sensors for track association. However, bearing-only tracking usually 

suffers from the observability problem, i.e., the target states may not be observable when only 

bearing measurement is available. In order to make the all of the target states observable, it 

requires that the ESM sensor have a motion with non-zero derivative of higher order than the 

target, i.e., the platform has to maneuver more rapidly that the targets. This is a rare scenario 

in practice, especially for shipborne ESM sensors. Non-observable states will result in 

inaccurate and biased estimates, which in turn, will severely deteriorate the performance of 

ESM/radar track association.  

      In this report, we present ESM/track association algorithm in a new modified polar 

coordinate (MPC) system based on a theoretical performance analysis of ESM/radar track 

association techniques in the MPC. A conclusion from the performance analysis is that , under 

the Gaussian assumption, using more observable states would be able to improve the 

performance of ESM/radar association. In the proposed algorithm, a state vector is used which 

includes extra observable states in addition to the first three states in Aidala’s MPC. The 

bearing-only tracking of the ESM sensors is implemented using a maximum likelihood (ML) 
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algorithm. Computer simulations show that the association performance can be improved 

effectively by using more observable states in the new MPC in different scenarios. 

 

 

 

 

Y. Zhou, W. Li and H. Leung. 2004. Maximum Likelihood Based ESM/Radar Track 
Association Algorithm in a New Modified Polar Coordinate. DRDC Ottawa TM 2004-
255. Defence R&D Canada - Ottawa.
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Sommaire 
 
     Le présent document porte principalement sur l’intégration de capteurs radar et de capteurs 

mesure de surveillance électronique (MSE), et plus particulièrement sur l’association de pistes 

MSE/radar. Les travaux sont justifiés par les besoins du projet sur l’Intégration de capteurs et 

de systèmes d'armes embarqués (SISWS) du Programme de démonstration de technologies 

(TDP) de RDDC, et pourront servir plus tard à la partie du projet portant sur la gestion des 

capteurs.  

     La fusion de pistes de cibles provenant de plusieurs capteurs similaires ou différents est 

une méthode efficace pour augmenter la précision des poursuites et les taux d’acquisition de 

cibles. Les capteurs SME et radar sont les deux types de capteurs les plus utilisés, et ils sont 

déployés dans les systèmes de surveillance aérienne, maritime et terrestre. Les informations 

obtenues par les capteurs radar et SME sont complémentaires, et l’intégration des sorties des 

capteurs radar et SME aidera à augmenter la vraisemblance de l’acquisition de cibles et la 

qualité des poursuites.  

      L’association de pistes est un préalable à la fusion de pistes SME/radar, et elle est 

essentielle  au rendement global des systèmes de poursuite. Une des spécificités de 

l’association de pistes SME/radar est que le seul paramètre commun entre les capteurs SME et 

radar est la mesure de gisement. De plus, les mesures de gisement ne sont pas synchronisées. 

Généralement, la poursuite en gisement seul est nécessaire pour les capteurs SME aux fins 

d’association de pistes. Toutefois, la poursuite en gisement seul est généralement touchée par 

le problème d’observabilité, c’est-à-dire que les états de cible peuvent ne pas être observables 

lorsqu’on dispose seulement des mesures de gisement. Afin que tous les états de cible soient 

observables, il faut que le capteur SME présente un mouvement avec une dérivée non nulle 

d’un ordre supérieur à celui de la cible, c’est-à-dire que la plate-forme doit se déplacer plus 

rapidement que la cible. Ce scénario est plutôt rare en pratique, particulièrement pour les 

capteurs SME de navire. Des états non observables résultent en estimations imprécises et 

faussées, qui à leur tour peuvent grandement détériorer le rendement de l’association de pistes 

SME/radar.  

      Dans le présent document, nous présentons un algorithme d’association de pistes 

SME/radar dans un nouveau système de coordonnées polaires modifié (MPC) basé sur une 

analyse de rendement théorique des techniques d’association de pistes SME/radar dans le 
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système MPC. La conclusion que nous pouvons tirer de l’analyse de rendement est que, selon 

l’assomption de Gauss, l’utilisation d’états plus observables permettrait d’améliorer le 

rendement de l’association de pistes SME/radar. Dans l’algorithme proposé, on utilise un 

vecteur d’état qui inclut des états observables supplémentaires en plus des trois premiers états 

du système MPC d’Aidala. La poursuite en gisement seul des capteurs SME est mise en 

application à l’aide d’un algorithme de maximum de vraisemblance (MV). Les simulations 

informatiques montrent que le rendement de l’association peut être amélioré de façon efficace 

si on utilise plus d’états observables avec le nouveau système MPC dans différents scénarios. 

 

Y. Zhou, W. Li and H. Leung. 2004. Maximum Likelihood Based ESM/Radar Track 
Association Algorithm in a New Modified Polar Coordinate. DRDC Ottawa TM 2004-
255. R & D pour la défense Canada - Ottawa.
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1. Introduction 
 
     Fusion of target tracks from multiple similar or dissimilar sensors is an effective method to 

improve tracking accuracy and target acquisition rates [1]. In practice, we are usually 

interested in fusing radar and electronic support measures (ESM) sensor outputs because of 

two reasons. First, radar and ESM sensors are the two most popular types of sensors that have 

been deployed in air surveillance systems [2]-[5].  Secondly, the outputs of radar and ESM 

sensors are complementary. Radar usually reports kinematics parameters of the targets 

(position, speed, acceleration with covariance information) while ESM sensors measure the 

attributes of the target emitters, which include information on emitter RF, PRI, PW as well as 

their bearings. The information obtained by radar and ESM sensors is complementary, and 

integrating radar and ESM sensor outputs will help to increase the likelihood of target 

acquisition and to improve the tracking quality. The overall outcome of fusion is improved 

situational awareness and more accurate and complete composite target track files.  

      In order to fuse radar and ESM sensor information, radar and ESM tracks need to be 

associated, i.e., tracks from the two sensors that represent the same emitter be recognized. It is 

a pre-requisite for ESM/radar fusion and essential to the overall performance of tracking 

systems. ESM/radar track association is unique in that the only common parameter between 

them is bearing measurement. In addition, the tracks from radar and ESM sensors are not 

synchronized in time because ESM tracks mainly depend on the illumination of the target 

emitters and the scheduling of the receivers. Since the only positional information that the 

ESM sensors observe is the bearing measurement, bearing-only tracking is required for ESM 

sensors for track association. The association performance follows closely that the bearing-

only tracking at the ESM sensors. One issue with bearing-only tracking is the observability, 

i.e., the target states may not be observable when only bearing measurement is available. It 

was found that all the target dynamical states couldn’t be estimated accurately when the 

targets are non-maneuvering. In recent years, many bearing-only tracking algorithms have 

been developed in the literature [6-12] to tackle the ovservability problem. The proposed 

approaches usually implement the bearing-only tracking in different coordinate systems 

including the polar coordinate (PC) [6-8], the Cartesian coordinate (CC) and the modified 

polar coordinate (MPC) [11]. The MPC approach by Aidala [11] has been shown to be able to 

overcome some shortcomings of passive tracking associated with the CC. In Aidala’s 
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approach, the four states in the MPC are bearing rate, ratio of range rate and range, bearing, 

and inverse range. He showed that the bearing state is always observable, and the bearing rate 

and the ratio of range and range rate are observable almost everywhere except in some special 

cases. However, to make the inverse range observable, the sensor platforms or the targets 

must be maneuvering [13[-[16]. In [12], the performances of some track association methods 

based on bearing-only tracking in the CC and the MPC were compared using the computer 

simulations. In [9][17], theoretical performance was carried out for a multisensor track-to-

track correlation technique in the CC, which includes the correct and false association 

probabilities.  

      In this report, we present an ESM/track association algorithm in a new modified polar 

coordinate (MPC) system. The algorithm is based on a theoretical performance analysis of 

ESM/radar track association techniques in the MPC. Note that the above-mentioned 

performance analysis is limited to particular state models used in the MPC and applicable to 

state vectors of fixed numbers of states. We develop a more general performance analysis, 

which is suitable for any number of states. In the analysis, correct and false association 

probabilities for maneuvering and non-maneuvering targets are derived. From the analysis, we 

show that the approach by Aidala always results in biased estimation of the fourth state, i.e., 

the inverse range, due to the non-observability for non-maneuvering targets and observers. 

The effect of the estimation bias of the inverse range state on the association performance is 

discussed. As a conclusion, we show that, under the Gaussian assumption, using more 

observable states can be used to improve ESM/radar association performance. To counter the 

observability of problem associated with non-maneuvering targets, we propose an approach in 

which the state vector includes extra observable states in addition to the first three states in 

Aidala’s MPC. The state vector has five states, namely, bearing, ratio of range rate and range, 

bearing rate, heading direction, and ratio of target speed and range. The heading direction and 

the ratio of the target speed and range were first defined in [18][19] for linearly uniformly 

moving targets, and were shown to be observable almost everywhere except for an extreme 

condition. The bearing-only tracking of the ESM sensors is implemented using a maximum 

likelihood (ML) algorithm. The ESM/radar track association is then to convert the radar tracks 

to the new MPC and associate them with the ESM tracks. The CRB of the ML estimator is 

also derived. It should be mentioned that, when the targets or the observers are maneuvering, 

the additional observable states can still be used to improve the track association performance. 
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      This report is organized as follows. In Section 2, we analyze the theoretical performance 

of classical ESM/radar track association techniques for maneuvering and non-maneuvering 

targets. The effect of the number of observable states on the association performance is also 

discussed. In Section 3, the system model for track association in the new MPC is introduced. 

Section 4 is devoted to the ML estimation method for ESM/radar sensor tracking and 

association algorithm proposed in the new MPC. Observability analysis for ESM bearing-only 

tracking in the new coordinate system is also given in this section. Finally, in Section 5, 

computer simulations are used to demonstrate the performance of the proposed track 

association algorithm.  
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2. Performance of Calssical ESM/Radar Track 
Association Techniques 

 
In this section, we discuss the association performance for maneuvering and non-maneuvering 

targets. In particular, the effect of the number of observable states on association performance 

is discussed. 

2.1 Association performance for manoeuvring and non-
manoeuvring targets 

 

    Consider the near-constant velocity model. Using the Cartesian coordinate, the target state 

vector is given by [ , , , ]T
CC x x y y=x , where x and y are the positions, and x  and y  are the 

velocity along x- and y-axis, respectively. The MPC proposed by Aidala [11] is given by 

[ , / , ,1/ ]x T
MPC r r rθ θ= , where θ , /r r , θ , and 1/r represent the bearing rate, ratio of range 

rate and range, bearing, and inverse range, respectively. Assume that the target state estimates 

by radar and the ESM sensor are independent and Gaussian distributed with zero mean and 

variances given by  

 

2 2 2 2
/ , , 1/ ,, , , ,radar r r radar radar r radarradardiag θθδ δ δ δ⎡ ⎤∑ = ⎣ ⎦  

2 2 2 2
/ , , 1/ ,, , , ,ESM r r ESM ESM r ESMESMdiag θθδ δ δ δ⎡ ⎤∑ = ⎣ ⎦ , 

 

respectively. Let us denote x̂radar  and x̂ESM  as the state estimates by radar and ESM sensor, 

respectively, the association is to determine whether they are from the same target or not. A 

statistical test for a four state vector can be written as 

 

                      ( ) ( ) ( )1ˆ ˆ ˆ ˆT
radar ESM radar ESM radar ESMY −= − ∑ +∑ −x x x x .                          (1) 

 

     The analysis can be categorized into four cases: (1) two tracks are from the same target and 

all target states are estimated unbiased; (2) two tracks are from the same target and one of the 
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states estimates is biased; (3) two tracks are from different targets and all target state estimates 

are unbiased; (4) two tracks are from different targets and one of the states is biased.  

     In the first case, the statistic Y can be shown to be chi-square-distributed with n degrees of 

freedom [20] 

                                     / 2 1 / 2
/ 2

1( ) , 0
2 ( / 2)

n y
Y np y y e y

n
− −= ≥

Γ
,                                            (2) 

where n is the number of target states used for track association, and ( )qΓ  is the gamma 

function 

                                      

1
0( ) , 0,

( ) ( 1)!, an integer, 0,

(0.5) , (1.5) 0.5 .

q tq t e dt q
q q q q

π π

∞ − −Γ = >

Γ = − >

Γ = Γ =

∫
                                                 (3) 

 

Let the test threshold be T . The correct and false association probability can be written as  

 

                        / 2 1 / 2
/ 20 0

1( )
2 ( / 2)

T T n y
c Y np p y dy y e dy

n
− −= =

Γ∫ ∫ ,                                    (4) 

 

and 

                 ( ) 1f Y cTp p y dy p∞= = −∫ ,                                                                (5) 

 

respectively. For even n, the correct association probability (4) can be simplified as   

 

                
/ 2 1/ 2

0

11
! 2

knT
c

k

TP e
k

−
−

=

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

∑ .                                                             (6) 

 

     In the second case, assume that the nth state is unobservable with an estimation bias 

denoted by nm∆ . It is also assume that the rest (n-1) estimates are independently Gaussian 

distributed with zero mean. It can be verified that the Y follows a non-central chi-square 

distribution with n degrees of freedom  
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             ( ) ( )
2

( 2) / 4
/ 2

/ 2 1
1( ) , 0
2

n
n

y m
Y n n

n

yp y e I y m y
m

−
− +∆

−

⎛ ⎞
= ∆ ≥⎜ ⎟∆⎝ ⎠

                              (7) 

 

where ( )I xα  denotes the α -th order modified Bessel function defined by 

 
2

0

( / 2)( ) , 0
! ( 1)

k

k

xI x x
k k

α

α α

+∞

=
= ≥

Γ + +
∑ .                                                                (8) 

 

The correct association probability can be obtained as 

 

              
2

( 2) / 4
( ) / 2

/ 2 120 0( ) (1 2) ( )n

n
T T y m

c Y n n
n

yp p y dy e I y m dy
m

−
− +∆

−
⎛ ⎞

= = ∆⎜ ⎟∆⎝ ⎠
∫ ∫ ,                       (9) 

 

and the false association probability can be computed by (5). 

     In the third case, consider the normalized element ( ) 12 2 2
, , , ,ˆ ˆ( ) /radar i ESM i radar i ESM ix x δ δ

−
− + . It 

can be verified that, under the Gaussian assumption, the normalized element has a variance of 

unity. Assuming that the normalized element has a mean denoted by im , the statistics Y can 

be verified to follow a non-central chi-square distribution with n degrees of freedom  

 

              
2

( 2) / 4
( ) / 2

/ 2 12
1( ) ( ), 0
2

n

n
y q

Y n n
n

yp y e I yq y
q

−

− +
−

⎛ ⎞
= ≥⎜ ⎟⎜ ⎟

⎝ ⎠
                                            (10) 

 

where 

 

             2 2

1

n

n i
i

q m
=

= ∑ .                                                                                                                (11) 

 

The correct and the false association probability are given by  
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2

( 2) / 4
( ) / 2

/ 2 12( ) (1/ 2) ( )n

n
y q

c Y n nT T
n

yp p y dy e I yq dy
q

−
∞ ∞ − +

−
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

∫ ∫  ,                           (12) 

 

and   

 

              0 ( ) 1T
f Y cp p y dy p= = −∫ ,                                                                                         (13) 

 

respectively.  

    In the fourth case, the tracks are from different targets and the estimate of the nth state has a 

bias nm∆ . The correct and the false association probability can be computed by (12) and (13), 

respectively, with 2
nq  given by 

 

               
12 2 2

1
( )

n

n i n n
i

q m m m
−

=
= + + ∆∑ .                                                                                     (14) 

2.2 Effect of number of observable states on association 
performance 

 
    When a target state is unobservable, its estimate will be biased. A biased state estimate will, 

in turn, deteriorate the association performance in terms of correct association probabilities. 

Most association algorithms have been based on the use of the observable state. Obviously, 

the use of different coordinate systems has an impact on the performance of association. In the 

following, we discuss how the number of observable states would affect the performance of 

association. 

     Consider different sets of observable states for ESM/radar track association. When only the 

bearing is used for association, the statistical test variable Y is chi-square distributed with a 

degree of freedom of one. Let 1T  denote the testing threshold. When more observable states 

are used, the new test variable can be written as  

              ( ) ( ) ( )11 ˆ ˆ ˆ ˆT
radar ESM radar ESM radar ESMY

n
−= − ∑ +∑ −x x x x ,                                        (15) 
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which can be verified to be a chi-square random variable with zero mean and variance 1/n. If 

the same test threshold 1T  is used, the correct association probability, assuming that the tracks 

are from the same target, is given by 

 

                           1 1 / 2 1 / 2
/ 20 0
1( )

(1/ ) 2 ( / 2)
T T n yn

c Y n np p y dy y e dy
n n

− −= =
Γ∫ ∫ .                             (16) 

 

For an integer l = n/2, (16) can be written in a simpler form as  

 

               1
1/ 2 1

0

11
! 2

klT n
c

k

T n
p e

k

−
−

=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∑ .                                                                      (17) 

 

From (17), it can be seen that, when the number n of the observable states increases, the 

correct association probability improves. 

      When the tracks are from different targets, it can be verified that Y is a non-central chi-

square variable with a nonzero mean and variance 1/n.  The false association probability is 

given by 

 

                     ( )2
1 1

( 2) / 4
/ 2

/ 2 120 0( ) ( ) ,
2

n
n

q y nT T
f Y n n

n

n yp P y dy e I ynq dy
q

−
− +

−
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

∫ ∫                        (18) 

 

which depends on both the number of observable states n and nq . The parameter nq  is 

determined by the ratio of the state difference and the state estimation variance. The 

probability difference of falsely associating tracks from different targets with (n+1) and n 

observable states can be expressed as 

 

( )

( )

2 2
11

2

( 1) / 4
( 1) / 2 2 2

( 1) / 2 1 10 2 2
1

( 2) / 4
/ 2

/ 2 12

1 ( ( 1) )
2

( ) ,
2

n n

n

n
q m y nT

f n n n
n n

n
q y n

n n
n

ynp e I y n q m
q m

yn e I ynq dy
q

+

−
− + + +

+ − +
+

−
− +

−

⎧ ⎛ ⎞+⎪∆ = + +⎜ ⎟⎨ ⎜ ⎟+⎪ ⎝ ⎠⎩
⎫⎛ ⎞ ⎪− ⎜ ⎟ ⎬⎜ ⎟
⎪⎝ ⎠ ⎭

∫

         (19) 
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where 1nm +  represents the ratio of the (n+1)th observable state difference for two tracks from 

different targets and the (n+1)th state estimation variance. There is no explicit formula for 

determining the value of 1nm +  that satisfies 0fp∆ < . If 1nm +  is large enough (as will be 

shown in the next section), the false association probability will decrease. Another criterion is 

defined here to describe the averaged correct association probability of associating tracks 

from the same target and from different targets, 

 

( (1 )) / 2average
c c fp p p= + − .                                                           (20) 

 

To ensure that cp  increases and fp  decreases at the same time when using one more 

observable state (i.e., the (n+1)th state),  the ratio 1nm +  of the (n+1) state difference and 

estimation variance must satisfy 0fp∆ < . 

2.3 Simulation results   
 
    In this section, we use computer simulations to demonstrate the performance of classical 

ESM/radar track association techniques. Figure 1 shows the correct association probabilities 

when bearing/inverse range or the four states in Aidala’s MPC under different cases. In Figure 

1(a), the radar and ESM tracks are originated from the same target while in Figure 1(b) they 

are from different targets. When the observer is made to be optimally maneuvering [16], the 

four states are observable for bearing-only tracking by the ESM sensor. If the target and ESM 

sensor are not maneuvering, the inverse range is not observable and will result in an 

estimation bias. Figures 1(a) and (b) show the correct association probability cp  in the 

absence of bias for the inverse range, w = 0, when the tracks are from same/different targets, 

respectively. It is shown that the correct association probabilities deteriorate with the increase 

of the estimation bias w of the inverse range. Therefore, the unobservable states are not 

preferred for track association in the classical track association techniques.  

    Figure 2 shows the effect of the number of observable states on the performance of the 

ESM/radar track association techniques. The testing threshold is fixed at T = 3.84. From 

Figure 2(a), we can observe that, when the tracks are from the same target, the correct 

association probability increases when extra observable states are used. Figure 2(b) shows the 
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false association probability versus the ratio of the (n+1)th state difference and estimation 

variance (n = 1 here).  The ratio of the first state difference and estimation variance is given 

by 2
1 20m = . When 2

2 7m > , the false association probability is seen to decrease when an extra 

observable state is used. For small 2
2m , the false association probability increases with the 

number of the observable states. However, the correct association probability also increases 

when the tracks are from the same target and different targets. Figure 2(d) shows sgn( )fp∆  

versus 2( )ni q=  and 2
1( )nj m += . Again n = 1. When the number of observable states and 2

nq  are 

fixed, it can be seen that the false association probability decreases when the ratio 2
1nm +  of the 

(n+1)th state difference and estimation variance is above certain value. 
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3. System Model for Track Association 
 
In this section, we present a new modified polar coordinate in which ESM/radar track 

association is implemented. The observability of the system model is also discussed. 

3.1 System model 
 
     The geometry of the new MPC is shown in Figure 3. The new MPC is a combination of 

Aidala’s MPC and the polar coordinate proposed in [18][19]. It consists of the 5 states that are 

shown to be observable almost anywhere for non-maneuvering targets and observers. The 

state vector of the kth target is 

 

  0 0 0 0 0 0 0 0( ) [ ( ), ( ) / ( ), ( ), ( ), ( ) / ( )]X T
k k k k k k k kt t r t r t t t v t r tθ θ φ= ,     1, 2, ,k K= . 

  

The first three states are defined in Aidala’s MPC and the last two states are defined in the 

polar coordinate in [18][19]. When assuming a linearly uniform motion model for the target, 

the trajectory of the kth target can be written as [18] 

 

                 0 0

0 0

( ) ( )( )
( ) ( )( )

k kxk

k kyk

x t t t vx t
y t t t vy t

+ −⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥ + −⎣ ⎦ ⎣ ⎦

,                                                     (21) 

 

where { ( ), ( )}k kx t y t denotes the Cartesian coordinates of the target, and kxv  and kyv  are the 

target speeds  along x- and y-axis, respectively. Aidala’s MPC can be written as [11] 

 

 1
0 3 0 4 0( ) ( ) tan [ ( , ) / ( , )]k kt t s t t s t tθ θ −= + ,                                                      (22) 

1 0 3 0 2 0 4 0
2 2
3 0 4 0

( , ) ( , ) ( , ) ( , )
( ) / ( )

( , ) ( , )k k
s t t s t t s t t s t t

r t r t
s t t s t t

+
=

+
,                                          (23) 

1 0 4 0 2 0 3 0
2 2
3 0 4 0

( , ) ( , ) ( , ) ( , )
( )

( , ) ( , )k
s t t s t t s t t s t t

t
s t t s t t

θ
−

=
+

,                                                    (24) 

 

where 
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              1 0 0 0 1 0 0 2 0 0 0( , ) ( ) [1/ ( )][ ( , )cos ( ) ( , )sin ( )] ( )k k k ks t t t r t w t t t w t t t tθ θ θ θ= + − = , 

2 0 0 0 0 1 0 0 2 0 0 0 0( , ) ( ) / ( ) [1/ ( )][ ( , )sin ( ) ( , )cos ( )] ( ) / ( )k k k k k k ks t t r t r t r t w t t t w t t t r t r tθ θ= + + = ,

3 0 0 0 0 3 0 0 4 0 0 0 0( , ) ( ) ( ) [1/ ( )][ ( , )cos ( ) ( , )sin ( )] ( ) ( )k k k ks t t t t t r t w t t t w t t t t t tθ θ θ θ= − + − = − , 

            4 0 0 0 0( , ) 1 ( )[ ( ) / ( )]k ks t t t t r t r t= + −     (25) 

 

and 

 

                

0

0

0

0

1 0

2 0

3 0

4 0

( )
( , )

( )( , )
( , ) ( ) ( )
( , )

( ) ( )

0

t
kxt

t
kyt

t
xt

t
kyt

a d
w t t

a dw t t
w t t t ka d
w t t

t a d

λ λ

λ λ

λ λ λ

λ λ λ

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ = =⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

∫

∫

∫

∫

                                           (26)  

 

for non-maneuvering targets and observers, kxa  and kya  denote the relative acceleration of the 

kth target with respect to the ESM sensor. From (22) to (26), we have 

 

              1 0 0
0

0 0 0

( ) ( )
( ) ( ) tan

1 ( )[ ( ) / ( )]
k

k k
k k

t t t
t t

t t r t r t
θ

θ θ − ⎡ ⎤−
= + ⎢ ⎥

+ −⎢ ⎥⎣ ⎦
.                                     (27) 

 

Assume that 0t t iτ= +  where τ  is the sensor sampling time interval. For the new MPC, the 

following relationship also holds [18] 

 

              1 0 0 0 0

0 0 0 0

sin[ ( )] [ ( ) ( )]cos[ ( )]
( ) tan

cos[ ( )] [ ( ) ( )]sin[ ( )]
k k k k

k
k k k k

t i v t r t t
t

t i v t r t t
θ τ φ

θ
θ τ φ

− ⎧ ⎫+
= ⎨ ⎬

+⎩ ⎭
,                                      (28) 

              0( ) ( )k kt tφ φ= ,                                                                                                           (29) 

             0 0

2 2 2
0 0 0 0 0 0

( ) / ( )
( ) ( )

1 2 [ ( ) / ( )]sin[ ( ) ( )] [ ( ) / ( )]
k k

k k

k k k k k k

v t r t
v t r t

i v t r t t t i v t r tτ θ φ τ
=

+ + +
.    (30) 

 

We model the ESM sensor bearing measurement as  
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, ( ) ( ) ( )k esm k esmz t t n tθ= +                                                                 (31) 

 

where ( )esmn t  is the additive measurement noise which is assumed to be independently 

Gaussian distributed with zero mean. The radar measurement in the local CC is given by  

 

                , ( ) [ ( )] ( )k radar k radart t t= +z h x n                                                         (32) 

 

where 

              , ( ) [ ( ), ( ), ( ), ( )]x T
k radar k k k kt x t x t y t y t= , 

              1

2

[ ( )]
[ ( )]

[ ( )]
k

k
k

h t
t

h t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

x
h x

x
, 

              ( ) ( )2 22 2
1 0 0 0 0[ ( )] ( ) ( ) ( ) ( ) ( ) ( )k k k k k k kh t x t y t x t i x t y t i y tτ τ= + = + + +x , 

              1 0 0
2

0 0

( ) ( )
( ( )) tan

( ) ( )
x k k

k
k k

y t i y t
h t

x t i x t
τ
τ

− ⎡ ⎤+
= ⎢ ⎥+⎣ ⎦

.                                                                     (33) 

 

Based on (32), we can estimate the target tracks in the CC by the maximum likelihood 

approach. The CC to the new MPC conversion can be done by 

 

              1 ( )( ) tan
( )

k
k

k

x tt
y t

θ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, 

               2 2

( ) ( ) ( ) ( )
( ) / ( )

( ) ( )
k k k k

k k
k k

x t x t y t y t
r t r t

x t y t
+

=
+

, 

               2 2

( ) ( ) ( ) ( )
( )

( ) ( )
k k k k

k
k k

x t y t x t y t
t

x t y t
θ

−
=

+
, 

               1 ( )
( ) tan

( )
k

k
k

y t
t

x t
φ − ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

               
2 2

2 2

( ) ( )
( ) / ( )

( ) ( )
k k

k k
k k

x t y t
v t r t

x t y t
+

=
+

.                                                                      (34) 
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Note that the states of the proposed MPC are not redundant because no state can be computed 

from the rest.  

3.2 Observability analysis  
 
      We use the following rank condition matrix to test the observability of the target states  

 

                 1

2

O 0
O

0 O
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,                                                                  (35) 

 

where 1O  can be obtained by the derivatives of ( )k tθ  in Aidala’s MPC with respect to its 

initial state 

 

              1 (1, ) 1O j = , 

              0 0 0
1

0

( )( 1) cos( ( ( 1) ) ( ))
(2, )

( ( 1) )
O k k k

k

r t j t j t
j

r t j
τ θ τ θ

τ
− + − −

=
+ −

,  

              0 0 0
1

0

( )( 1) sin( ( ( 1) ) ( ))
(3, )

( ( 1) )
O k k k

k

r t j t j t
j

r t j
τ θ τ θ

τ
− + − −

= −
+ −

.                                        (36) 

 

and 2O  can be obtained from the derivatives of the ( )k tθ definition in (28), 

 

       

0 0

0 0

0 0
2

0 0 0 0

0 0

0 0

( ) ( 2 )
1

( ) ( )
( ) ( 2 )

0
( ( ) / ( )) ( ( ) / ( ))

( ) ( 2 )
0

( ) ( )

O

k k

k k

k k

k k k k

k k

k

t t
t t

t t
v t r t v t r t

t t
t t

θ τ θ τ
θ θ

θ τ θ τ

θ τ θ τ
φ φ

⎡ ⎤∂ + ∂ +
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ + ∂ +

= ⎢ ⎥
∂ ∂⎢ ⎥

⎢ ⎥∂ + ∂ +
⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

.                                        (37) 

 

The matrix determinant of 2O  is given by [18] 
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2
0 0 0 0 0 0

2
1 0 2 0

2
0 0 0 0 0 0

2 0 1 0

cos( ( ) ( )) 4 2 ( ( ) / ( )) sin( ( ) ( ))
det( )

( ) ( )

2 cos( ( ) ( )) ( ( ) / ( )) sin( ( ) ( ))
( ) ( )

O k k k k k k

k k k k k k

t t v t r t t t
t t

t t v t r t t t
t t

τ θ φ τ τ θ φ
ξ ξ

τ θ φ τ τ θ φ
ξ ξ

− + − − +
= ⋅

+ − − +
+ ⋅

   (38) 

where 

 

              2 2
1 0 0 0 0 0 0 0( ) ( ( ) / ( )) 2 ( ( ) / ( )) sin( ( ) ( ))k k k k k kt v t r t v t r t t tξ τ τ θ φ= + + + , 

             2 2
2 0 0 0 0 0 0 0( ) ( ( ) / ( )) 4 4 ( ( ) / ( )) sin( ( ) ( ))k k k k k kt v t r t v t r t t tξ τ τ θ φ= + + + .                  (39) 

 

To guarantee 2det( ) 0O ≠ , the following condition must be satisfied, 

 

                 0 0( ) ( )
2k kt t πθ φ+ ≠ .                                                          (40) 

 

To guarantee 1det( ) 0O ≠ , the following condition must be satisfied,  

 

                  0 0( ) ( ) 0
2k kt iT t or πθ θ+ − ≠ .                                          (41) 

 

It follows that the states in the new MPC are observable almost anywhere except under some 

very special conditions expressed as 

 

              0 0( ) ( ) ,
2k kt t πθ φ+ =  

                 0 0( ) ( ) 0
2k kt i t or πθ τ θ+ − = .                                             (42) 

 

      For maneuvering observers, since the states in the new MPC can be computed from the 

states in the CC, which are observable [9], they are observable.  
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4. Maximum Likelihood Estimator 
 
In this section, we apply the ML algorithm for estimating the tracks in the new MPC for the 

ESM sensor. The CRBs for the estimates are derived. The ESM/radar association logic based 

on the state estimates and their respective CRBs is also discussed. 

 

4.1 ML estimates and CRBs  
 

     Because the new MPC is a combination of Aidala’s MPC and the polar coordinate in [18], 

we define two negative log likelihood functions separately. The first is based on the ESM 

sensor measurement model (1) and bearing definition (27) in Aidala’s MPC 

              
2

2 1 0
1 0 02

1 0 0

( )1log( ) ( ) ( ) tan
1 [ ( ) / ( )]

N
k

esm esm k
i k kesm

i t
L N z t i t

i r t r t
τθ

πδ τ θ
τδ

−

=

⎛ ⎞⎡ ⎤
= + + − −⎜ ⎟⎢ ⎥⎜ ⎟+⎢ ⎥⎣ ⎦⎝ ⎠

∑ .(43) 

 

where the constant terms are ignored. The second likelihood is based on the ESM sensor 

measurement equation (28) and bearing definition (25) in the polar coordinate of [18]  

 

             

( )

(

2
2

2 0 02
1

2
02

1

2
1 0 0 0 0

0 0 0 0

1log( ) ( ) ( )

1log( ) ( )

sin[ ( )] [ ( ) ( )]cos[ ( )]
tan .

cos[ ( )] [ ( ) ( )]sin[ ( )]

N

esm esm k
iesm

N

esm esm
iesm

k k k k

k k k k

L N z t i t i

N z t i

t i v t r t t
t i v t r t t

πδ τ θ τ
δ

πδ τ
δ

θ τ φ
θ τ φ

=

=

−

= + + − +

= + +

⎞⎧ ⎫+
− ⎟⎨ ⎬⎟+⎩ ⎭⎠

∑

∑                       (44) 

 

It can be verified that minimizing 1L  and 2L  is equivalent to minimizing   

 

              
2

1 0
1 0 0

1 0 0

( )
( ) ( ) tan

1 [ ( ) / ( )]

N
k

esm k
i k k

i t
J z t i t

i r t r t
τθ

τ θ
τ

−

=

⎛ ⎞⎡ ⎤
= + − −⎜ ⎟⎢ ⎥⎜ ⎟+⎢ ⎥⎣ ⎦⎝ ⎠
∑                   (45) 

and 
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              (
2

1 0 0 0 0
2 0

1 0 0 0 0

sin[ ( )] [ ( ) ( )]cos[ ( )]
( ) tan

cos[ ( )] [ ( ) ( )]sin[ ( )]

N
k k k k

esm
i k k k k

t i v t r t t
J z t i

t i v t r t t
θ τ φ

τ
θ τ φ

−

=

⎞⎧ ⎫+
= + − ⎟⎨ ⎬⎟+⎩ ⎭⎠
∑ .     (46) 

 

Obviously, (45) and (46) are nonlinear optimization problems and numerical techniques are 

required. The Newton optimization method is used to estimate the kth target state 

0 0 0 0 0 0 0 0( ) [ ( ), ( ), ( ), ( ) / ( ), ( ) / ( )]X T
k k k k k k k kt t t t v t r t r t r tθ φ θ= . The (p+1)th iteration for 

calculating 0( )X k t  is given by   

 

                ( 1) ( ) ( ) 1
0 0 , ,, ,( ) ( )X X H Gp p p

k l k lk l k lt t µ+ −= −                                               (47) 

 

where ,1 0 0 0 0 0( ) [ ( ), ( ) / ( ), ( )]X T
k k k k kt t r t r t tθ θ= , , 2 0 0 0 0( ) [ ( ), ( ) / ( )]X T

k k k kt t v t r tφ= , ( )pµ  is 

the pth iteration step-size, ,Gk l  is the gradient vector given by  

 

, ,
1

2 ( ) ( )G R
N

k l k l k l
i

i iγ
=

= ∑                                                        (48) 

 

where 

              1 0
,1 0 0

0 0

ˆ ( )ˆ( ) ( ) ( ) tan ˆˆ1 [ ( ) / ( )]
k

k esm k
k k

i t
i z t i t

i r t r t
τθ

γ τ θ
τ

−
⎡ ⎤
⎢ ⎥= + − −
⎢ ⎥+⎣ ⎦

,                                                    

              1 0 0 0 0
,2 0

0 0 0 0

ˆ ˆˆ ˆsin[ ( )] [ ( ) ( )]cos[ ( )]
( ) ( ) tan ˆ ˆˆ ˆcos[ ( )] [ ( ) ( )]sin[ ( )]

k k k k
k esm

k k k k

t i v t r t t
i z t i

t i v t r t t
θ τ φ

γ τ
θ τ φ

−
⎧ ⎫+⎪ ⎪= + − ⎨ ⎬

+⎪ ⎪⎩ ⎭
,            (49) 

and  

 

0
,

, 0

( )
( )

( )
R

X
k

k l
k l

t i
i

t
θ τ∂ +

=
∂

.                                                                     (50) 

 

Using the bearing definition in (27) in Aidala’s MPC, we can compute ,1 ( )Rk i  by 
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0

0

( )
1

( )
k

k

t i
t

θ τ
θ

∂ +
=

∂
, 

         
2

0 0

2 20 0 0 0 0

ˆ( ) ( ) ( )
ˆ( ( ) / ( ) ˆ ˆ[ ( )] [1 ( ) / ( )]

k k

k k k k k

t i i t
r t r t i t i r t r t

θ τ τ θ

τθ τ

∂ +
= −

∂ + +
, 

0 0 0

2 20 0 0 0

ˆ ˆ( ) [1 ( ) / ( )]
ˆ( ) ˆ ˆ[ ( )] [1 ( ) / ( )]

k k k

k k k k

t i i i r t r t
t i t i r t r t

θ τ τ τ
θ τθ τ

∂ + +
=

∂ + +
.                                      (51) 

 

,2 ( )Rk i  can be calculated based on the bearing definition of (28) in the polar coordinate of 

[18] as  

 

              
2 2

0 0 0 0 0
2 2 2

0 0 0 0 0 0 0

ˆ ˆˆ ˆ( ) [ ( ) / ( )]sin[ ( ) ( )]
ˆ ˆ( ) ˆ ˆ ˆ ˆ[ ( ) / ( )] 2 [ ( ) / ( )]sin[ ( ) ( )]

k k k k k

k k k k k k k

t i i i v t r t t t
t v t r t i i v t r t t t

θ τ τ τ θ φ
φ τ τ θ φ

∂ + − − +
=

∂ + + +
, 

              

0 0 0
2 2 2

0 0 0 0 0 0 0 0

ˆ ˆ( ) cos[ ( ) ( )]
ˆ ˆ[ ( ) / ( )] ˆ ˆ ˆ ˆ[ ( ) / ( )] 2 [ ( ) / ( )]sin[ ( ) ( )]

k k k

k k k k k k k k

t i i t t
v t r t v t r t i i v t r t t t
θ τ τ θ φ

τ τ θ φ
∂ + − +

=
∂ + + +

.(52) 

 

We use the approximate Hessian   

 

                 , , ,
1

( ) ( )H R R
N T

k l k l k l
i

i i
=

= ∑ .                                                      (53) 

 

The Fisher information matrix (FIM) of the ESM track estimates for the kth target, i.e., 

,1 0 0 0 0 0( ) [ ( ), ( ) / ( ), ( )]X T
k k k k kt t r t r t tθ θ= and , 2 0 0 0 0( ) [ ( ), ( ) / ( )]X T

k k k kt t v t r tφ= can be written 

as 

 

             ( ) 12
, , ,

1
( ) ( )FIM R R

N T
k l esm k l k l

i
i iδ

−

=
= ∑ .                                               (54) 

 

The CRB of 0( )X k t  is the diagonal elements of the inverse FIM,  
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4.2 ML estimator and CRB for radar 
 
     The negative log likelihood function of the radar measurements can be written as  
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where 
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      The target state , 0( )k radar tx can be estimated similarly by using the Newton optimization 

method. When the radar tracks in the CC are estimated, they are converted into the new MPC 

using relationship (34). The Fisher Information matrix (FIM) can be written as  
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∑ .           (57) 

 

The estimation covariance W of the state vector , 0 0 0 0 0( ) [ ( ), ( ), ( ), ( )]x T
k radar k k k kt x t x t y t y t=  

satisfies the following inequality 

 

               1
, , , , ,ˆ ˆ[ ][ ] ( )W x x x x FIM xT

k radar k radar k radar k radar k radarE −= − − ≥ .               (58) 
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       The FIM of ( )X k t  in the new MPC can be derived from the FIM of radar track in the CC 

as [10] 
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The CRB for 0( )X k t  is given by 

 

              [ ] 1
, 0( ( )FIM Xk radar radar kCRB t −= .                                    (60)                                    

 

4.3 ESM/radar track association  
 

     Consider two tracks X̂ radar  and X̂esm  by the ML estimators. Under the hypothesis that 

X̂ radar  and X̂esm  are independent and Gaussian distributed, the association decision test is 

defined by  

 

                ( ) ( ) ( )1ˆ ˆ ˆ ˆX X CRB CRB X X
T

radar esm radar esm radar esm T−− + − ≤                    (61) 

 

where T is a preset threshold. The radar and ESM tracks are said to be associated when (61) 

holds. Otherwise, they are considered to be from different targets. In practice, since the real 

target states are not known, we use the estimated target states and equations (54) and (60) to 

evaluate the CRB for the target state estimates in (61). 
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5. Experimental Results  
 
      In this section, we use computer simulations to assess the ESM/radar track association 

performance in the new MPC for different scenarios. These scenarios include: (1) a single 

target with locally linear dynamic model, (2) two close targets with locally linear dynamic 

models, which are moving away from the radar and ESM sensor, (3) two close targets with 

locally linear dynamic models, which are moving towards the sensors, (4) two close targets 

with locally linear dynamic models, which are moving away from the sensors, and (5) two 

targets with locally linear dynamic model, and the observers are maneuvering. In scenarios (1) 

to (4), the observers are assumed to be non-maneuvering. 

     Figure 4 compares the variances of the ML estimates of the ESM track with the CRBs. The 

initial position of the target is given by (-8000 m, 12000 m). The initial velocities along x- and 

y-axis are 320 m/s and 230 m/s, respectively. Figures 4(a) to 4(e) show the estimation errors 

of the five components of the state vector, respectively. It can be seen that the variances of the 

ML estimates of the ESM tracks approach their CRBs as the number of measurements 

increases.  

     Figure 5 and Figure 6 show the performance of different association algorithms using the 

proposed MPC with different testing thresholds. In Figure 5, the testing threshold T is set to 

3.84 (corresponding to the correct association probability 0.95cp =  for a chi-square 

distribution of freedom 1). Three association algorithms are compared. The first uses only one 

state (bearing) as in [6][8]. The second approach uses two states (bearing and range 

rate/range) and the third one combines all the five observable states in the new MPC. In 

Figure 5(a), the testing variable for a given number of samples, k, is defined as  

 

          ( ) ( ) ( )1ˆ ˆ ˆ ˆ( ) ( )X X CRB CRB X X
T

radar esm radar esm radar esmY k k −= − + − . 

 

In Figure 5(a), the correct association probabilities with one, two, and five states are about 

0.95, 0.98, and 0.995, respectively. The performance of the ESM/radar track association 

indeed improves with the use of more observable states. It is also observed that, when the 

number of measurements increases, both the target state estimation errors and the CRB 
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decrease while the correct association probability keeps almost the same. In Figure 5(b), the 

testing variable for k is defined as   

 

        ( ) ( ) ( )1ˆ ˆ ˆ ˆ(10) (10)X X CRB CRB X X
T

radar esm radar esm radar esmY −= − + − .  

 

It can be seen that the correct association probability improves with the increase of the 

number of measurements because of the smaller estimation errors of ( )ˆ ˆX Xradar esm− . In 

Figure 6, T is set to 2.05 (corresponding to a correct association probability 0.85cp =  for a 

chi-square distribution of freedom 1). 

     Figure 7 shows the correct association probabilities of different association techniques 

when two targets are moving away from the observer. Both targets are observed by the radar 

and ESM sensor. The initial states of target A and target B are  (-8000 m, 320 m/s, 12000 m, 

230 m/s) and (-8000 m, 230 m/s, 10000 m, 320 m/s), respectively. T set to be 3.84. Let caap  

and cbbp  denote the probabilities of correctly associating ESM track A with radar track A, 

and ESM track B with radar track B, respectively, and cabp and cbap  represent the 

probabilities of not associating ESM track A with radar track B, ESM track B with radar track 

A, respectively. The correct association probability in Figure 7(a) and 7(b) is defined as 

( ) / 4c caa cbb cab cbap p p p p= + + + . The definitions of the testing variable Y in Figure 7(a) and 

7(b) are the same as in Figure 5(a) and 5(b), respectively. Figures 7 (a) and 7(b) show that the 

probability of correctly associating both the same target and different targets can be improved 

effectively by using more observable states. Another index for evaluating the performance of 

association is the probability of correctly associating the same target, which is defined as 

( ) / 2c caa cbbp p p= + , and shown in Figure 7(c) and 7(d). From Figure 7(c) and 7(d), we can 

observe than the probability of correctly associating the same target increases when more 

observable states are used. 

     Figure 8 shows the probabilities of falsely associating one target from another. The 

simulation parameters are the same as in Figure 7. The false association probability in Figure 

8 is defined as ( ) / 2f fab fbap p p= + , where fabp  and fbap  denote the probabilities of falsely 

associating ESM track A with radar track B, and ESM track B with radar Track A, 
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respectively. Figure 8 shows that the false association probabilities based on two states 

(bearing and heading direction) and five states are lower than that of the method based on 

bearing only. In Figures 7 and 8, it is shown that the two states and the five states based 

methods not only increase the probabilities of correctly associating tracks from the same 

target, but also decrease the probabilities of falsely associating tracks from different targets at 

the same time. 

     Figure 9 shows the correct association probabilities of different association techniques 

when two targets are moving towards the observers. The initial states of target A and B are  

(20000 m, 100 m/s, 30000 m, 200 m/s) and (20000 m, 150 m/s, 25000 m, 200 m/s), 

respectively. T is set to be 3.84. The correct association probability in Figure 9(a) and 9(b) is 

defined as ( ) / 4c caa cbb cab cbap p p p p= + + + . The test Y in Figure 9(a) and 9(b) is the same 

as in Figure 5(a) and 5(b), respectively. In Figures 9 (a) and 9(b), it is shown that the 

probability of correctly associating both the same target and different targets improves 

effectively by using more observable states. The correct association probability in Figures 

9(c) and 9(d) is defined as ( ) / 2c caa cbbp p p= + . Figure 10 shows the probabilities of falsely 

associating one target from another. The simulation parameters are the same as in Figure 9. In 

this scenario, the false association probability decreases when more observable states are 

used. 

     Figure 11 shows the correct association probabilities for different association techniques 

when two close targets are moving away from the observers. The initial states of Target A and 

Target B are  (-8000 m, 320 m/s, 12000 m, 230 m/s) and (-8000 m, 320 m/s, 11000 m, 230 

m/s), respectively. T is 3.84 for Figure 11(a) and 11(b), and is 2.05 for Figures 11(c) and 

11(d). In Figure 11(a) and 7(c), the correct association probability is given by 

( ) / 4c caa cbb cab cbap p p p p= + + + . The test Y in Figure 11(a) and 11(b) is the same as in 

Figure 5(a) and 5(b), respectively. Figures 11(b) and 11(d) show that the probability of 

correctly associating the same target improves in the case of two close targets moving away 

from the observers. In Figures 11(a) and 11(b), it is observed that the total correct association 

probability ( ) / 4c caa cbb cab cbap p p p p= + + + decreases for small numbers of measurements 

when more observable states are used. However, it improves as the number of measurements 

increases. The five states based association becomes the best when the number of 

measurements is 70 for T=3.84, and 40 for the T=2.05. 
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     Figure 12 shows the probabilities of falsely associating one target from another. The 

simulation parameters are the same as in Figure 11. In Figure 12(a) and 12(b), T is set to 3.84 

and 2.05, respectively. When the number of measurements is small, it is observed that the 

false association probability increases with the use of extra observable states, which causes 

the deterioration of the total correct association probability shown in Figures 11(a) and 11(c). 

The reason is that the ratio of the state difference and estimation variance is small with small 

number of measurements. When the number of measurements increases, the probability of 

falsely associating two close targets approaches 0, and the total association probability with 

more states begin to its advantages. Although the false association probability may increases 

on its own, the probability of correctly associating the same target always improves with the 

use of extra observable states, as shown in Figures 11(b) and 11(d). 

     Figure 13 shows the correct association probabilities for maneuvering observers. The 

tracks of the targets and observers are shown in Figure 13(a). The correct association 

probabilities for different association techniques are shown in Figure 13(b). When the 

observer is maneuvering, the states of the targets in CC, i.e., positions and velocities along x- 

and y-axis are observable. We use an ML estimator, which is similar to that introduced in 

Section 5, for estimating the radar tracks in the CC. The estimated tracks are then converted to 

the new MPC for association. Figure 13(b) shows that the correct association probability 

improves with the use of extra observable states for maneuvering observers. 
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6. Conclusions 
 
In this report, a new modified polar coordinate (MPC) system has been proposed based on a 

theoretical performance analysis of the classical track-to-track association techniques for 

maneuvering and non-maneuvering targets and observers. It is shown that the correct 

association probabilities will decrease with the introduction of bias into the observable states 

non-maneuvering targets and observers. The performance of the ESM/radar track association 

can be improved effectively if more observable states are used for association. Based on this 

conclusion, we proposed ESM/radar track association algorithm in the new MPC which 

includes extra observable states in addition to Aidala’s MPC. A maximum likelihood (ML) 

algorithm is proposed to estimate the ESM tracks in the new MPC. The new MPC formulation 

is applicable to both maneuvering and non-maneuvering targets and observers. The CRBs of 

the radar and ESM track estimates are also derived. Computer simulations were used to 

demonstrate the performance of the proposed algorithm. It was shown that the track 

association performance improved effectively by using more observable states in the new 

MPC in different scenarios. 
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Figure 1. Figure 1. Correct association probabilities under different cases: (a) The 
radar and ESM tracks are related to the same target; (b) The radar and ESM tracks 

are related to different targets. The cp  at w = 0 in (a) and (b) shows the correct 
association probability in case 1 and case 3, respectively, i.e. no estimation biases for 

the target states. 
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                                    (a)                                                                               (b) 
 

  
(c) (d) 

                       

Figure 2. Association probability versus the number of observable states used for 
ESM/radar track association. The testing threshold is fixed to be T = 3.84. (a) 

probability of correctly associating tracks from the same target; (b) probability of 
falsely associating tracks from different targets; (c) probability of correctly associating 
tracks from the same targets and from different targets; (d) sgn( )fp∆  versus 2( )ni q=  

and 2
1( )nj m += , n = 1 here. 
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Figure 3. Geometry of the new MPC. 
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                                    (a)                                                                                 (b) 

      
                                    (c)                                                                               (d) 
 

 
                                   (e) 

  

Figure 4. Comparison of the ML estimator and CRB for ESM tracking: (a) bearing; (b) 
range rate/range; (c) bearing rate; (d) heading direction; (e) target velocity/range. 
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Figure 5. Correct association probability for the single target. The testing threshold is 
3.84. (a) The variance in the testing variable changes with the sample number; (b) 

The variance in the testing variable is fixed. 

 

 

   

          

Figure 6. Correct association probability for the single target. The testing threshold is 
2.05. (a) The variance in the testing variable changes with the sample number; (b) 

The variance in the testing variable is fixed. 
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(a) (b) 

   

                                       (c)                                                                                 (d) 

Figure 7.  Correct association probabilities for two close targets moving away from the 
observer: (a) ( ) / 4c caa cbb cab cbap p p p p= + + + . Changed variance in the testing 

variable; (b) ( ) / 2c caa cbbp p p= + ; Fixed variance in the testing variable; (c) 
( ) / 4c caa cbb cab cbap p p p p= + + + . Changed variance in the testing variable; (d) 

( ) / 2c caa cbbp p p= + . Fixed variance in the testing variable. 
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Figure 8. False association probabilities for the two targets in Figure 7. 
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(a) (b) 

     

(b) (d) 

Figure 9. Correct association probabilities for two close targets moving toward the 
observer: (a) ( ) / 4c caa cbb cab cbap p p p p= + + + . Changed variance in the testing 

variable; (b) ( ) / 2c caa cbbp p p= + ; Fixed variance in the testing variable; (c) 
( ) / 4c caa cbb cab cbap p p p p= + + + . Changed variance in the testing variable; (d) 

( ) / 2c caa cbbp p p= + . Fixed variance in the testing variable. 
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Figure 10. False association probabilities for the two targets in Figure 9. 
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(a) (b) 

   

                                    (c)                                                                                  (d) 
 

Figure 11. Correct association probabilities for two very close targets moving away 
from the observer: (a) T = 3.84, ( ) / 4c caa cbb cab cbap p p p p= + + + ; (b) T = 2.05, 

( ) / 2c caa cbbp p p= + . 
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                                       (a)                                                                            (b) 

Figure 12. False association probabilities for the two targets in Figure 11: (a) T  = 
3.84; (b) T = 2.05. 

 

 

   

                               (a)                                                                          (b) 

Figure 13. Correct association probabilities for maneuvering observer: (a) tracks for 
targets and observers; (b) correct association probabilities. 

( ) / 4c caa cbb cab cbap p p p p= + + + . The testing threshold is 2.05. 
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